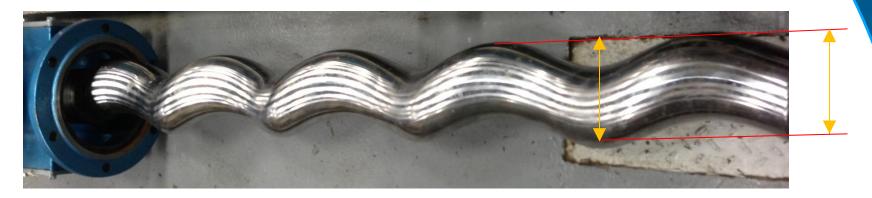


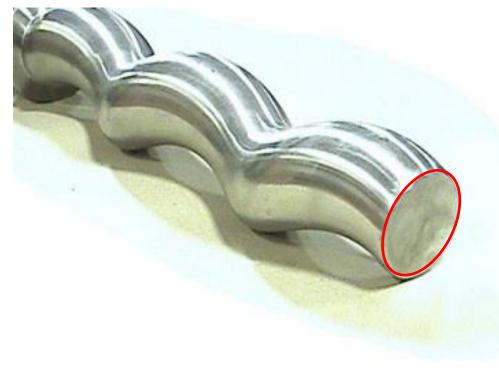
Always the Right Solution™

Maintenance and Troubleshooting of Progressing Cavity Pumps

Chad Huskey

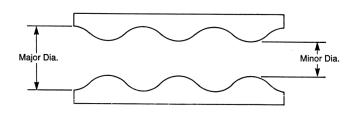
MOYNO Tech Eng. <u>chad.huskey@nov.com</u>


The Progressing Cavity Pump and it's Geometry


- A progressing cavity (PC) pump, or a single screw pump, is a positive displacement pump and therefore a fixed volume is displaced with each revolution of the pump's Rotor.
- The Rotor forms a single helix (like a corkscrew) and rotates eccentrically in the Stator.
- The Stator has a double helix cavity (like a double corkscrew) double the total volume of the rotor.
- When combined, as the rotor turns, cavities or pockets nearly half of the total volume are formed in the stator which push the product from the suction toward the discharge end of the pump.

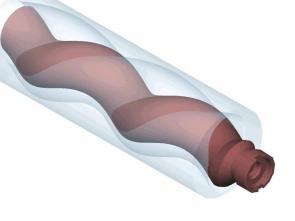
Rotor Geometry

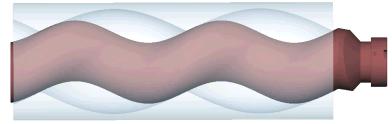
- Crest to crest
- (called Major)
- Circular cross-section
- (called Minor)
- Machined in a helical shape similar to a corkscrew



Stator Geometry

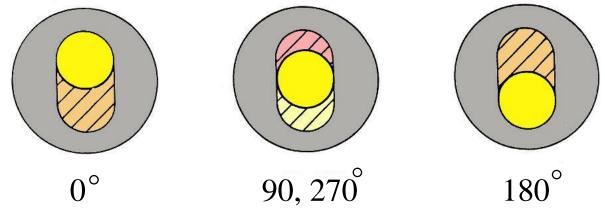
- Oval shaped cavity crosssection.
- Similar geometry as Rotor but uses a double helix.
- Available in several elastomers, metal, or urethane construction materials.


Stator



Cavities

- As Rotor orbits (turns eccentrically) inside the Stator.
- The motion creates cavities and progresses them from suction to discharge.



End View of Rotor/Stator Combination

4ε

When the rotor is turned within the stator, the total cross-sectional area of the cavities remains the same regardless of the position of the rotor in the stator (see illustration below).

LOOKING AT END VIEWS OF ROTOR TURNING IN STATOR, AS THE ROTOR COMPLETES ONE REVOLUTION. This feature results in a continuous, non-pulsating flow because the sum of any two opposing cavities is a constant.

4ε

Application Variables

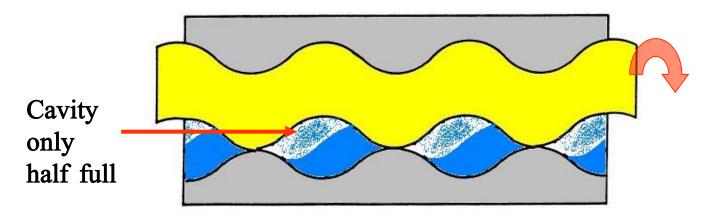
APPLICATION INFLUENCES "THE BIG THREE"

✓ Abrasion
 ✓ Temperature
 ✓ Viscosity

Effects of Abrasion

- Abrasive fluids = Wear
 - Wear is proportional to speed; minimize speed to minimize wear.
 - De-rate pressure per stage to limit slip amount ... 87 PSI for no abrasion; 20 PSI for heavy abrasion.
 - Specify oversize Rotor to increase interference fit = longer life.
 - Use abrasion resistant Stator material or softer durometer elastomers: RM 100M, RM 103, Urethane etc.
 - Double chrome rotor for additional Rotor base metal protection.

Abrasive Characteristic	Fluids	Press/stage	
None	Water, Polymer, Oil	87 PSI	
Light	Milk or Lime	65 PSI	
Medium	Sludge, Clay or Gypsum Slurries, Chocolate, Drilling Mud	43 PSI	
Heavy	Emery Dust, Lapping Compounds, Grout, Sand, Granulated Sugar	20 PSI	


Effects of Temperature

- Stator Elastomers swell from 70 to 130° (physical Rotor dimensions require adjustment above this 130° temperature) and Elastomers shrink with Lower temperature (Below 50°).
- Metal parts such as the rotor and drive train tend to expand and contract at a negligible rate than elastomer counterparts.
- Since Stator is bonded to a metal tube, the rubber can only swell inward on the rotor, or shrink away from the rotor.
- This changes the compressive fit between the rotor and stator. Again, to keep a standard fit, the Rotor requires under sizing above 130°, and over sizing below 50°.
- Under extreme heat or cold, elastomer Stators may not be appropriate.
- Metal Rotor and Stator combinations can be used for extreme temperature applications because they swell or shrink at the similar rates.

Effects of Viscosity

- The more viscous a fluid, the slower the pump will have to run in order to permit the fluid to flow into the cavity.
- Even at reduced speeds, the pump may not develop 100% volumetric efficiency and this must be accounted for in the selection process.

Loss of Fill (volumetric) Efficiency starts at

1 CPS = Above 1800 RPM 1000 CPS = 150 RPM 100 CPS = 700 RPM 10,000 CPS = 30 RPM

Effects of Viscosity

Material	Viscosity (centipoise)		
Water @ 70deg F	1-5		
Blood or Kerosene	10		
Anti-freeze or Ethylene Glycol	15		
Motor Oil SAE 10 or Corn oil	50-100		
Motor Oil SAE 30 or Maple Syrup	150-200		
Motor Oil SAE 40 or Castor Oil	250-500		
Motor Oil SAE 60 or Glycerin	1-2 thousand		
Karo Corn Syrup or Honey	2-3 thousand		
Blackstrap Molasses	5-10 thousand		
Hershey Chocolate Syrup	10-25 thousand		
Ketchup or Common Mustard	50-70 thousand		
Tomato Paste or Peanut butter	150-250 thousand		
Crisco Shortening	1-2 million		
Caulking compound	5-10 million		
Window Putty (glazing compound)	100 million		

Summary

How does a MOYNO Pump Work?

- The standard PC pump consists of a Rotor (metal) which rotates within an elastomeric Stator.
 - The Rotor has a circular cross-section and is machined in a single helix like a corkscrew.
 - The Stator cavity is molded as a **double helix** with an Oval cross-section. The helix geometry is similar to the rotor to create an interference fit.
 - As the rotor turns inside the stator it orbits on an eccentric (at an offset around the center axis), this motion creates cavities that progresses from suction to discharge; moving product and building pressure.

Summary Progressing Cavity Pump Advantages

- The MOYNO design creates a low shear, metered, and pulse-less flow.
- The PC pump is able to effectively handle "water-like" to super viscous fluids including levels of air or gases.
 - It can gently pump large particulates and handle abrasive solids.
 - Provides excellent suction capabilities and does not air lock.
- The <u>flexible geometry</u> of the MOYNO pump allows.
 Multiple drive end choices (power) and <u>multiple stages</u> (pressure).
 MOYNO pumps allow *precise* control of the interference fit.
- MOYNO can best match the pump to your application.

General Maintenance

Preventative Maintenance

Most of the maintenance needed for a MOYNO pump is based on "look-feel"

DAILY INSPECTION;

- Lip seals on bearing housing
- Packing/Mech seal (flow/pressure/noise)
- Gear reducer (temp/noise).

WEEKLY MAINT;

- Adjust packing (should drip 2-5 times per minute)
- Lube packing (typically 2-3 pumps per week).

YEARLY MAINT;

- Replace packing, inspect shaft wear.
- Replace automatic lubricator (if applicable).
- Pull spool piece to inspect pipe internal condition.

Lubrication Schedule

• Bearings

Bearings are lubricated and the factory and do not normally need periodic re-lubrication-recommended only when drive shaft is removed for maintenance.

Packing

Once a week or more, frequency determined by process.

Gear Joints

Only recommended when gear joints are disassembled. (example; when replace rotor)

Lubrication Suppliers

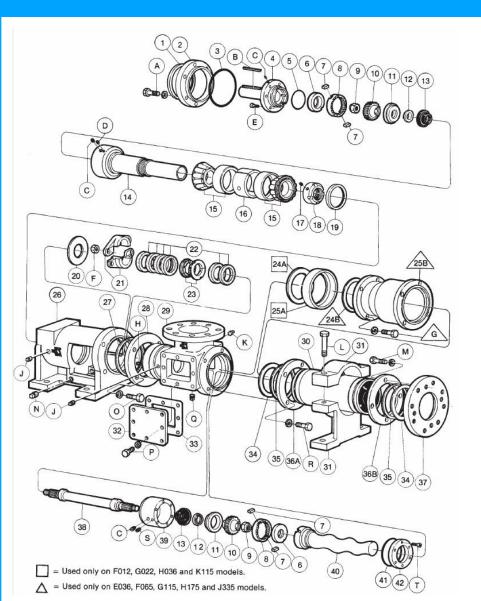
MOYNO® PROGRESSING CAVITY PUMPS USE TWO LUBRICANT FOR MOST INDUSTRIAL APPLICATIONS. (TEMPERATURES 400° F OR LESS) DUBOISE CHEMICAL ACG – 2, AND MOBIL-1 NLGI Grade 2

DuBOISE CHEMICAL. ACG - 2 and MOBIL-1 NLGI Grade 2

ARE RECOMMENDED FOR: GEAR JOINTS PIN JOINTS BEARINGS INDUSTRIAL PACKINGS

THE FOLLOWING LUBRICANTS ARE ACCEPTABLE FOR:PIN JOINTSBEARINGSINDUSTRIAL PACKINGS1. ACG-2DuBOISE (2000)2. MOBIL 1 NLGI Grade 2MOBIL CH3. MOBILUX EP2MOBIL CH4. ALVANIA EP2SHELL OIL5. MYTILUS 2SHELL OIL6. SUNAPLEX 992 EPSUN OIL7. ACL-2FISKE BRO8. TRIBOL 823-2CASTROL

9. STARPLEX SERIES


DuBOISE CHEMICAL (FACTORY INSTALLED) MOBIL CHEMICAL (RECOMMENDED) MOBIL CHEMICAL SHELL OIL SHELL OIL SUN OIL FISKE BROTHERS CASTROL TEXACO

FOR **MOYNO® SANITARY PUMPS**, THE RECOMMENDED PACKING LUBRICATION IS **FGG - 2** from **DuBoise Chemical** or **Accrolube – 2** from **Accro-Sea**l or equivalent.

NOTE: THE ABOVE LUBRICANTS ARE <u>ALL</u> NLGI Grade 2 Greases

Manual Diagrams

		DRIVE END SIZE						
	DESCRIPTION							
_	DESCRIPTION	E	F	G	н	J	ĸ	
1	Radial Grease Seal	AG0611	PF0611	PG0611	PH0611	PJ0611	PK061	
2	Bearing Cover Plate	PE0341	PF0341	PG0341	PH0341	PJ0341	PK034	
	O-Ring	PE110Q	BJ112Q	BK113Q	PH110Q	BH114Q	PK1100	
	Drive Shaft Head	PE0971	PF0971	PG0971	PH0971	PJ0971	PK097	
	O-Ring Shaft Head:	BE111Q	BE113Q	BG114Q	BH111Q	TJ111Q	BK1140	
	Primary Thrust Plate	PE0981	PF0981	PG0981	PH0981	PJ0981	PK098	
	Key	RE0761	RF0761	RG0761	RH0761	RJ0761	RK076	
	Ring Gear	AE0952	AF0952	AG0952	AH0952	AJ0952	AK095	
	Lock Nut	RE0581	RF0581	RG0581	RH0581	RJ0581	RK058	
	Gear Ball	AE0951	AF0951	AG0951	AH0951	AJ0951	AK095	
	Gear Joint Kit (See Note C)	KPE951	KPF951	KPG951	KPH951	KPJ951	KPK95	
	Secondary Thrust Plate	PE0982	PF0982	PG0982	PH0982	PJ0982	PK098	
	Seal Support	PE0891	PF0891	PG0891	PH0891	PJ0891	PK089	
	Gear Joint Seal:							
	CDQ, CSQ, SSQ, CDR, CSR, SSR	PE087Q	PF087Q	PG087Q	PH087Q	PJ087Q	PK087	
	CDB, CSB, SSB, CDF, CSF, SSF	PE087F	PF087F	PG087F	PH087F	PJ087F	PK087	
	Gear Joint Seal Kit (See Note D):	1 LOON	110011	1 00011	11100/1	100011	111001	
	CDQ, CSQ, SSQ, CDR, CSR, SSR	KPE87Q	KPF87Q	KPG87Q	KPH87Q	KPJ87Q	KPK87	
	CDB, CSB, SSB, CDF, CSF, SSF	KPE87F	KPF87F	KPG87F	KPH87F	KPJ87F	KPK87	
	Drive Shaft:	RELOW	REFOR	RF GOTT	RF110/1	RF JOH	RENOT	
•		DEODEA	DEGOOGI	DCODEL	DUODE1	D 10001	DKODE	
	CDQ, CDR, CDB, CDF	PE0261	PF0261	PG0261	PH0261	PJ0261	PK026	
	CSQ, CSR, CSB, CSF,	-	-	-		-	-	
2	SSQ, SSR, SSB, SSF	PE0266	PF0266	PG0266	PH0266	PJ0266	PK026	
5	Tapered Roller Bearing	PE0311	PF0311	PG0311	PH0311	PJ0311	PK031	
	Bearing Kit (See Note B)	KPE291	KPF291	KPG291	KPH291	KPJ291	KPK29	
5	Bearing Spacer	PE0331	PF0331	PG0331	PH0331	PJ0331	PK033	
7	Bearing Lock Plug	P10762	P10762	P10762	P10762	P10762	P1076	
3	Bearing Lock Nut	PE0581	PF0581	PG0581	PH0581	PJ0581	PK058	
)	Thrust Grease Seal	AK0621	XK0621	PG0621	PH0621	AI4611	PK062	
)	Slinger Ring	PE0771	PF0771	PG0771	PH0771	PJ0771	PK077	
	Packing Gland Half (See Note A):							
	CDQ, CDR, CDB, CDF,							
	CSQ, CSR, CSB, CSF	PE041D	PF041D	PG041D	PH041D	PJ041D	PK041	
	SSQ, SSR, SSB, SSF	PE041S	PF041S	PG041S	PH041S	PJ041S	PK041	
2	Packing (See Note A)	PE0413	PF0423	PG0413	PH0413	PJ0413	PK042	
3	Lantern Ring Half (See Note A)	AE0571	PF0423	PG0423	PH0423	AJ0571	PK042	
	Adapter Gasket:	AE05/1	FF0571	FG05/T	FH03/1	AJ05/1	FRUST	
łA			BF085B	BG085B	BH085B		BK085	
	CDB, CSB, SSB							
	CDQ, CDR, CSQ, CSR, SSQ, SSR		BF085Q	BG085Q	BH085Q		BK0850	
	CDF, CSF, SSF		BF085F	BG085F	BH085F		BK085	
4B	Adapter Gasket:							
	CDB, CSB, SSB					BK085B		
	CDQ, CDR, CSQ, CSR, SSQ, SSR					BK0B5Q		
	CDF,CSF,SSF					BK085F		
5A	Adapter Bushing—See Tables 4-2 and 4-3							
БB	Adapter Bushing-See Tables 4-2 and 4-3							
3	Bearing Housing	PE0051	PF0051	PG0051	PH0051	PJ0051	PK005	
•	Retaining Ring	AF0085	AG0085	PG0085	AH0085	PJ0085	PK008	
3	Clamp Ring	AF0932	AG0932	PG0932	AH0932	PJ0932	PK093	
9	Suction Housing—See Tables 4-2 and 4-3	ra ooor	TOUC	1 OCCOL	THIODOL		111000	
5	Stator—See Table 4-4							
	Stator Support—See Tables 4-2 and 4-3							
	Inspection Plate:							
	CDQ, CDR, CDB, CDF,							
		BE0171	BF0171	BF0171	BF0171	BH0171	BJ017	
	CSQ, CSR, CSB, CSF							
	SSQ, SSR, SSB, SSF	BE0176	BF0176	BF0176	BF0176	BH0176	BJ0176	
	-K800 CDQ, CDR, CDB, CDF,							
	CSQ, CSR, CSB, CSF	Contraction of					BJ017	
	SSQ, SSR, SSB, SSF						BJ0177	
5	Inspection Plate Gasket:							
	CDB, CSB, SSB	BE079B	BF079B	BF079B	BF079B	BH079B	BJ0791	
	CDQ, CDR, CSQ, CSR, SSQ, SSR	BE079Q	BF079Q	BF079Q	BF079Q	BH079Q	BH0790	
	CDF, CSF, SSF	BE079F	BF079F	BF079F	BF079F	BH079F	BH079	
ŧ.	Stator Gasket—See Table 4-5		210101	5.0.0	21 01 01	2110101	011010	
5	Retaining Ring—See Tables 4-2 and 4-3							

DRIVE END SIZE

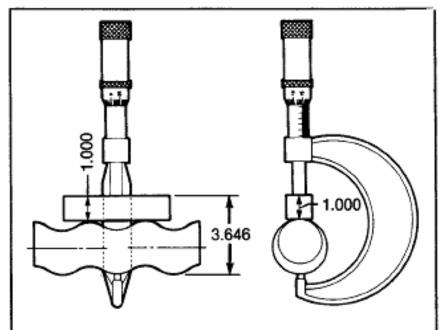
Always the Right Solution[™]

FAILURE ANALYSIS AND EXAMPLES OF WORN & FAILED MOYNO PARTS

Equipment failures are frustrating and inconvenient.

That doesn't mean that a failure is not useful.

Some of the more useful information you will gather as a maintenance professional or operator will come from failure analysis.


Was the failure caused by operator error? Is there a process issue? Was there a mechanical shortfall?

Failure analysis will help to determine future preventative maintenance and narrow the decision making for necessary changes concerning process or equipment.

Iwavs the Right Solution"

Inspecting Rotors

To check any rotor, place 1.000 inch bar across the crest on one side of the rotor. The micrometer reading minus 1.000 equals the rotor crest to crest diameter. Example: 3.646 in.-1.000 in. = 2.646 in. crest to crest.

Standard Rotor *Crest to Crest Dia. (inches) Capacity 2.772 + .000/-.004 008 2.676 + .000/-.004 012 022 3.425 + .000/-.004 036 4.015 + .000/-.0044.015 + .000/-.004050 065 4906 + 000/-004090 4.906 + .000/-004115 5.709 + .000/-.004175 6.584 + .000/-.004335 5 800 + .000/-.005 345 7.260 + .000/-.004 620 7.128 + .000/-.005 7.658 + .000/- .004 800

Figure 4-4. Measuring Rotor Dimension

Inspecting Stators

A worn stator may appear pitted and gauged, or may appear smooth similar to new.

Performance is the best measure of rotor to stator fit. If unable to measure performance adequately, suspected stator wear can be evaluated by a **MOYNO** sales representative.

Alwavs the Right Solution™

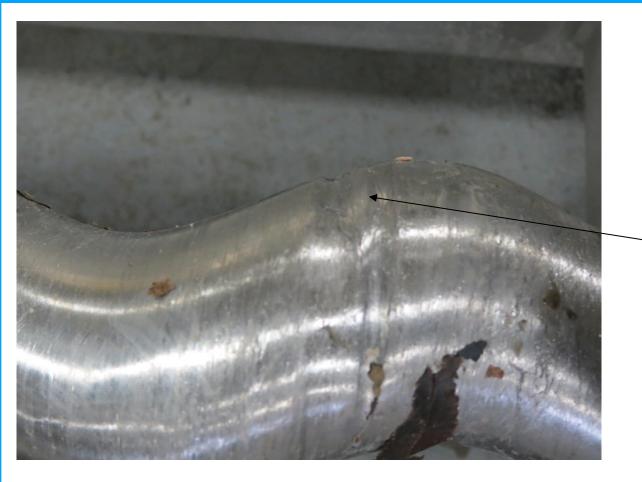
What is cavitation and how can I tell if my pump is cavitating?

In summary, cavitation is an abnormal condition that can result in loss of production, and equipment damage. In the context of pumps, the term cavitation implies a dynamic process of formation of bubbles inside the liquid, their growth and subsequent collapse as the liquid flows through the pump. It can be **vaporous** or **gaseous**.

Both types of bubbles are formed at a point inside the pump where the local static pressure is less than the vapor pressure of the liquid (vaporous cavitation) or saturation pressure of the gas (gaseous cavitation, also referred to as "air binding"). The noise and pump vibration is caused by the collapse of the air bubble when it gets pressurized. Typically in a **MOYNO** pump the cause of cavitation is a lack of suction volume. The symptoms are reduced flow, a rumble with vibration or and may include a rapid popping sound.

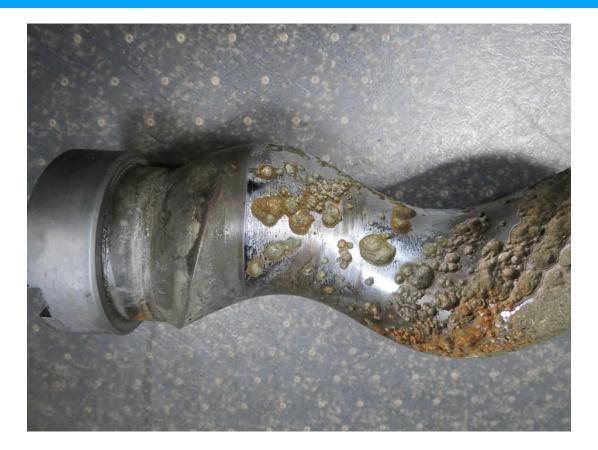
Always the Right Solution™

TYPICAL ROTOR ABRASIVE WEAR PATTERN


NOTE THE TELLTALE RIDGES

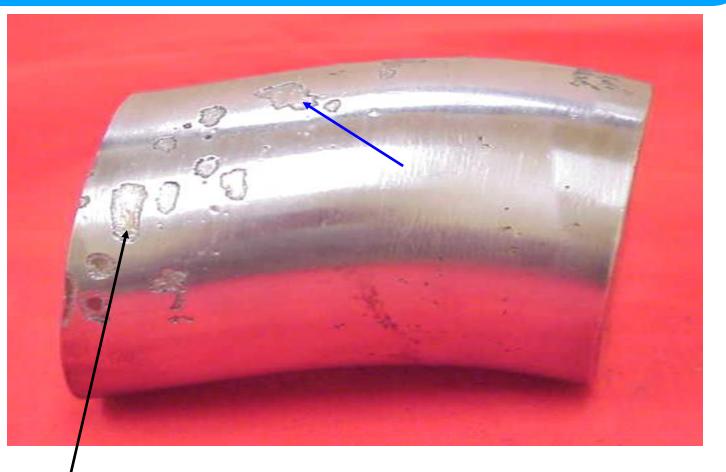
ABRASIVE WEAR ON A ROTOR NOTE THE RIDGES OR GROOVES

ABRASIVE WEAR ON A 316ss ROTOR NOTE THE DEEP GAUGING GROOVES

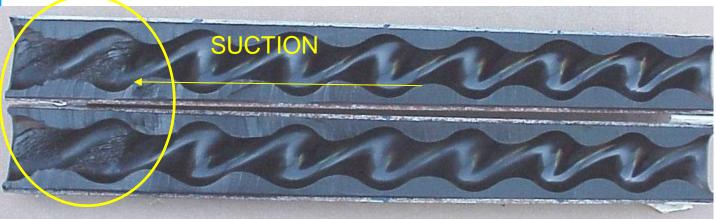

- TYPICAL ROTOR EVEN WEAR PATTERN
- A LITTLE TOO WORN TO RE-PLATE
- ADJUSTING THE MAINTENANCE INTERVAL MAY LOWER COSTS

- CHEMICAL ATTACK TO THE <u>EXPOSED</u> <u>CARBON</u> <u>STEEL</u> BASE METAL OF A CHROME PLATED ROTOR.
- A SYMPTOM INDICATING THE ROTOR BASE METAL
 IS NOT COMPATIBLE WITH THE PROCESS

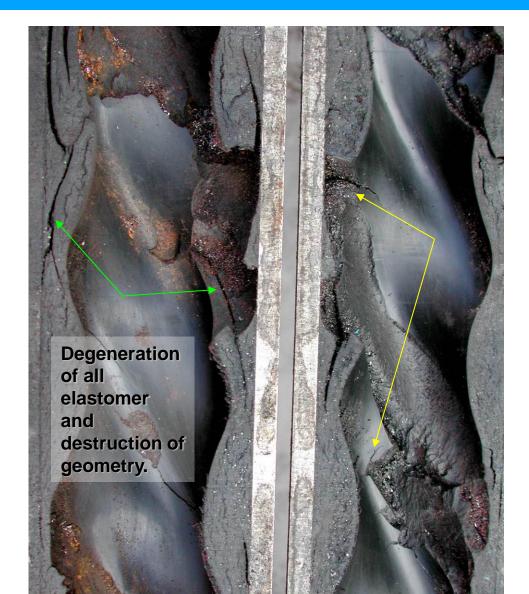
Alwavs the Right Solution™


 CHEMICAL ATTACK UNDERMINING THE CARBON STEEL BASE METAL <u>THRU</u> THE CHROME PLATING.

MOYNO Always the Right Solution[™]


 CHEMICAL ATTACK TO THE CARBON STEEL BASE METAL <u>THRU</u> THE CHROME PLATING.

CHEMICAL ATTACK TO THE 316 SS BASE METAL UNDER THE CHROME PLATING.

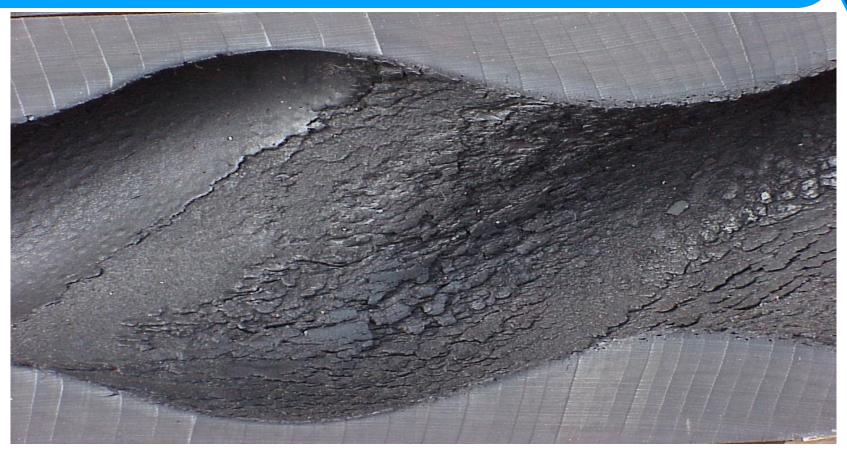


THE INNER SURFACE OF A RUN DRY STATOR IS HARD AND HAS A VERY ROUGH TEXTURE.

AN ORANGE PEEL TEXTURE ALONG SEAL LINES IS A TELLTALE SIGN OF RUN DRY.

RUN DRY DAMAGE NORMALLY BEGINS AT THE SUCTION END.

- CHEMICAL ATTACK AND RUN DRY CAN OFTEN HAVE A SIMILAR APPEARANCE.
- ONCE CHEMICAL ATTACK HAS SET IN RUN DRY WILL EVENTUALLY OCCUR.
- <u>NOTE</u> THE EVIDENCE OF HARDNESS AND ROUGH TEXTURE AND CRACKS THROUGH THE ELASTOMER. THESE DEEP CRACKS THROUGH THE ELASTOMER CAN CONFIRM <u>CHEMICAL</u> <u>ATTACK</u>.



Elastomer totally burnt by run dry. THE SURROUNDING AREAS STILL HAVE INTERGRITY THE SURFACE OF THE STATOR IS HARD AND HAS AN ORANGE PEEL TEXTURE.

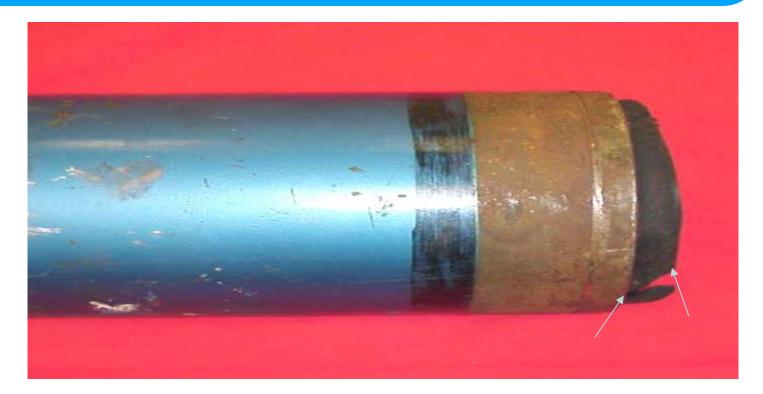
THE SURFACE BLISTERING AND CRACKING COMBINED WITH A BURNED SMELL AND THE ELASTOMER INTACT IN SURROUNDING AREAS IS CONSISTENT WITH RUN DRY

Always the Right Solution

Elastomer totally burnt by running dry. Note that surrounds areas are perfect.

This results in a different diagnostic process and narrows the focus when evaluating the loss of performance.

- THE STATOR HAS BECOME SOFT AND TACKY AS A RESULT OF RUN DRY.
- THE ELASTOMER IS SMEARED AND STICKING TO THE ROTOR.
- THE STATOR WILL SMELL LIKE BURNED RUBBER AND HAVE A MELTED APPEARANCE.



- ELASTOMER SWELLING IS EVIDENT ON THE ENDS OF THIS STATOR.
- SIGNIFICANT SWELLING <u>OR</u> SHRINKING IS A CLEAR SIGN OF CHEMICAL ATTACK.

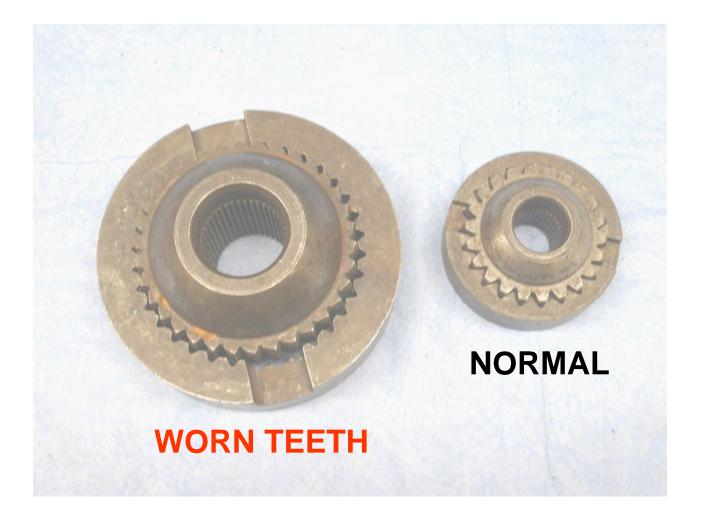
Alwavs the Right Solution™

<u>CHEMICAL ATTACK HAS CAUSED THIS NITRILE STATOR</u> TO SWELL. <u>NOTE</u> HOW THE RUBBER BULGES OUT PAST THE END OF THE STATOR TUBE. THIS TYPE OF CHEMICAL ATTACK (SWELLING) COULD OCCUR WITH ANY STATOR ELASTOMER.

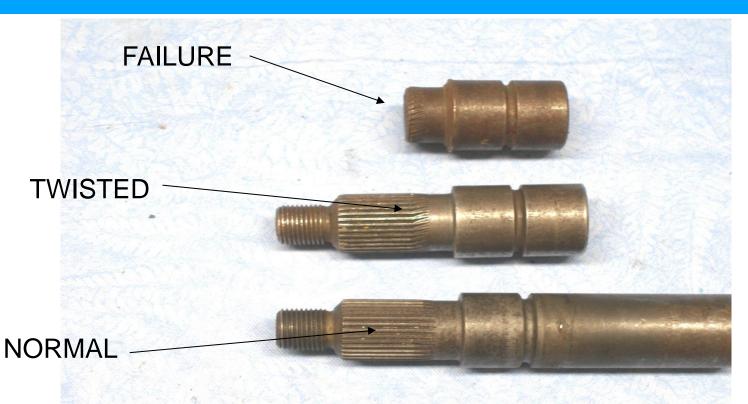
Alwavs the Right Solution™

DELAMINATION IS THE RESULT OF THE ELASTOMER MOLECULES NOT KNITTING PROPERLY DURING THE MANUFACTURING PROCESS. THE ELASTOMER MAY THEN COME LOOSE IN LAYERS WHILE PUMPING AGAINST HIGH DISCHARGE PRESSURE.

Hysteresis (fatigue)

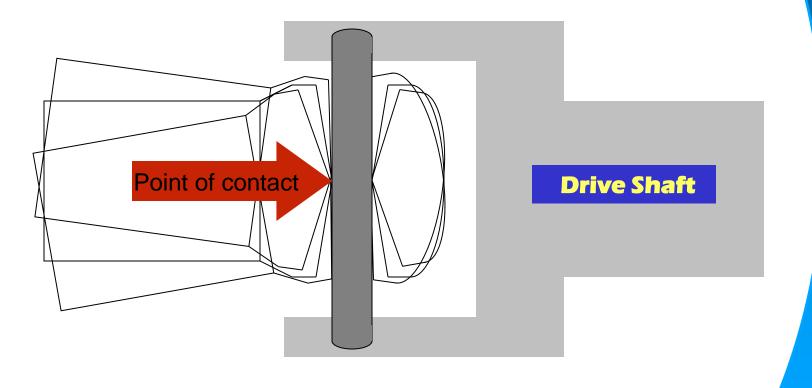

Action: Cycling loads on elastomer increases internal temperature and causes a secondary vulcanization.

Result: The elastomer loses its elastic properties, becomes very hard and cracks arise in the surrounds areas of cycling loading LARGE CHUNKS TYPICALLY WILL BREAK LOOSE



TWISTED SPLINES/BROKEN CONNECTING ROD TYPICALLY INDICATE HIGH TORQUE

TYPICAL CIRCULAR PATTERN INDICATES TORQUE FAILURE


NORMAL

 Gear joint seals should be inspected for damage when the pump is serviced

Pin Joint Dynamics – Point Contact in Connecting Rod

The "hour glass" shape necessary to transfer motion, results in large thrust loads to be transferred to the pin in a point contact.

Typical pin wear patterns

Typical connecting rod wear pattern

Excessive rotor head wear

Questions?

A customer reported repeated failures of a connecting rod. Application is a G2 (open throat housing) pumping 7% solids from a filter press.

MOYNO replaced the 1st connecting rod under warranty. Then the 2nd connecting rod.

When the customer had a 3rd failure, and using customer supplied information concerning the failed parts, engineering changed the material to 17-4 ph (heat treated stainless) with a strength of 145,000 psi.

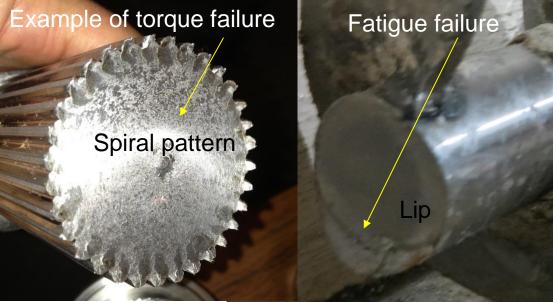
Engineering also developed a hollow tube version of the connecting rod to withstand higher torsional loads, without the higher expense associated with 17-4.

When the 17-4 con-rod broke Moyno sent a team to investigate the issue.

We looked at the broken parts

Noted an irregular break pattern. Noted no twist in the splines.

We looked at and evaluated the normal wear parts for damage or anything that could cause binding.



When nothing was obvious we further evaluated the type of failure And began to carefully review the operational information.

The type of failure pattern is not consistent with a torque failure and is consistent with a fatigue failure Example of torque failure

Then the operational information; how the system operates and conditions when operating were closely reviewed.

The system has high levels of whey from a cheese producer, which results in significant pipe build up.

The system is run by the flow rate (maintain a certain flow), so if the pipe buildup results in restriction the pump speeds up. The max speed by design is 419 rpm, which is faster than we would prefer for a 2 meter open throat.

The system is protected from high pressure using a pressure ring switch assembly and analog gauge.

Plant maintenance reported that pipe buildup regularly restricted the internal pipe dimension to 2" or less.

High pressure safeguard is set to shut off at 80psi, but heavy buildup can stop the switch and the pressure gauge from properly reading = malfunctioning. The restriction would also lower the flow rate resulting in faster, and faster pump speeds to keep up.

Review of the VFD settings revealed the system is enabled to run over the design speed at a max 78Hz which translates to 544rpm max.

The system failures/breakages generally occurred on third shift when the system was not closely monitored.

The conclusion after reviewing all the information was the pipe internal buildup needed to be addressed by more frequent maintenance or a process change.

But more importantly the <u>speed</u> <u>needed to be restricted</u> to at or below the original design speed.

Questions?

